LV8712T / LV8713T

Bi-CMOS LSI

PWM Constant-Current Control Stepping Motor Driver

Overview

The LV8712T and LV8713T are microstepping motor drivers with built-in translator for easy operation. The LV8712T supports full-step, half-step, quarter-step, and $1 / 8$-step resolution. The LV8713T supports full-step, half-step, $1 / 16$-step, and $1 / 32$-step resolution. These ICs are optimal for driving stepping motor of scanner and small printer.

Features

- Single-channel PWM constant-current control stepping motor driver incorporated.
- Microstepping is configurable to the following modes:

Full-step, half-step, quarter-step, or $1 / 8$-step. (LV8712T)
Full-step, half-step, $1 / 16$-step, or $1 / 32$-step. (LV8713T)

- CLK-IN input facilitates the control of microstepping.
- Power-supply voltage of motor $: \mathrm{VM} \max =18 \mathrm{~V}$
- Output current
- Output ON resistance $\quad:$ RON $=1.1 \Omega$ (upper and lower total, typical, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)
- Thermal shutdown circuit and low voltage detecting circuit incorporated.

Typical Applications

- POS Printer
- Scanner
- Thermal Printer Unit
- Security camera
- Air-conditioner

Selection Guide

Part Number	Microstepping mode
LV8712T	Full-,half-,quarter-,1/8-step
LV8713T	Full-,half-,1/16-,1/32-step

Pin Assignment

Package Dimension

unit: mm (typ)
3260A

Mounting Pad Sketch

(Unit:mm)	
Reference symbol	TSSOP24 (225mil)
eE	5.80
e	0.50
b3	0.32
I1	1.00

Caution: The package dimension is a reference value, which is not a guaranteed value.

Block Diagram

LV8712T/LV8713T

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VM max		18	V
Logic supply voltage	$\mathrm{V}_{\text {CC }}$ max		6	V
Output peak current	lo peak	Each 1ch, tw $\leq 10 \mathrm{~ms}$, duty 20%	1.0	A
Output continuousness current	I_{0} max	Each 1ch	800	mA
Logic input voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to $V_{C C}+0.3$	V
Allowable power dissipation	Pd max	*	1.35	W
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified circuit board: $57.0 \mathrm{~mm} \times 57.0 \mathrm{~mm} \times 1.7 \mathrm{~mm}$, glass epoxy 2-layer board.

Allowable Operating Ratings at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	4 to 16
Motor supply voltage range	VM		V	
Logic supply voltage range	V_{CC}		2.7 to 5.5	V
Logic input voltage	$\mathrm{V}_{\text {IN }}$		-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
VREF input voltage range	VREF		0 to $\mathrm{V}_{\mathrm{CC}}-1.8$	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=12 \mathrm{~V}, \mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{VREF}=1.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Standby mode current drain	IMstn	PS = "L", no load			1	$\mu \mathrm{A}$
	${ }^{\text {I CCstn }}$	PS = "L", no load			1	$\mu \mathrm{A}$
Operating mode current drain	IM	PS = "H", no load	0.3	0.5	0.7	mA
	ICC	PS = "H", no load	0.9	1.3	1.7	mA
Thermal shutdown temperature	TSD	Design guarantee		180		${ }^{\circ} \mathrm{C}$
Thermal hysteresis width	$\Delta T S D$	Design guarantee		40		${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$ low voltage cutting voltage	VthV ${ }_{\text {CC }}$		2.1	2.4	2.7	V
Low voltage hysteresis voltage	VthHIS		100	130	160	mV
REG5 output voltage	Vreg5	$\mathrm{I}^{\mathrm{O}}=-1 \mathrm{~mA}$	4.5	5	5.5	V
Output on resistance	RonU	$\mathrm{I}^{\mathrm{O}}=-800 \mathrm{~mA}$, Source-side on resistance		0.78	1.0	Ω
	RonD	$\mathrm{l} \mathrm{O}=800 \mathrm{~mA}$, Sink-side on resistance		0.32	0.43	Ω
Output leakage current	Ioleak	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$			10	$\mu \mathrm{A}$
Diode forward voltage	VD	ID $=-800 \mathrm{~mA}$		1.0	1.2	V
Logic pin input current	$\mathrm{I}_{1} \mathrm{~N}^{\text {L }}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	4	8	12	$\mu \mathrm{A}$
	${ }_{1 \times}{ }^{H}$	$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$	22	33	45	$\mu \mathrm{A}$
Logic high-level input voltage	$\mathrm{V}_{1 N \mathrm{H}}$		2.0			V
Logic low-level input voltage	$\mathrm{V}_{\text {IN }} \mathrm{L}$				0.8	V
VREF input current	IREF	$\mathrm{VREF}=1.0 \mathrm{~V}$	-0.5			$\mu \mathrm{A}$
Current setting comparator threshold voltage (current attenuation rate switching)	Vtatt00	ATT1 $=\mathrm{L}, \mathrm{ATT} 2=\mathrm{L}$	0.191	0.200	0.209	V
	Vtatt01	ATT1 $=\mathrm{H}, \mathrm{ATT} 2=\mathrm{L}$	0.152	0.160	0.168	V
	Vtatt10	ATT1 $=\mathrm{L}, \mathrm{ATT} 2=\mathrm{H}$	0.112	0.120	0.128	V
	Vtatt11	ATT1 $=$ H, ATT2 $=\mathrm{H}$	0.072	0.080	0.088	V
Chopping frequency	Fchop	Cchop $=220 \mathrm{pF}$	36	45	54	kHz
CHOP pin threshold voltage	$\mathrm{V}_{\mathrm{CHOP}} \mathrm{H}$		0.6	0.7	0.8	V
	$\mathrm{V}_{\mathrm{CHOPL}}$		0.17	0.2	0.23	V
CHOP pin charge/discharge current	Ichop		7	10	13	$\mu \mathrm{A}$
MONI pin saturation voltage	Vsatmon	Imoni $=1 \mathrm{~mA}$		250	400	mV

LV8712T/LV8713T
Continued from preceding page

Parameter		Symbol	Conditions	Ratings			Unit	
		min		typ	max			
Current setting comparator threshold voltage (current step switching)	8W1-2-phase drive (1/32-step at LV8713T)		Vtdac0_2W	Step 0 (When initialized: channel 1 comparator level)	0.191	0.200	0.209	V
		Vtdac1_8W	Step 1 (Initial state+1)	0.191	0.200	0.209	V	
		Vtdac2_8W	Step 2 (Initial state+2)	0.191	0.200	0.209	V	
		Vtdac3_8W	Step 3 (Initial state+3)	0.189	0.198	0.207	V	
		Vtdac4_8W	Step 4 (Initial state+4)	0.187	0.196	0.205	V	
		Vtdac5_8W	Step 5 (Initial state+5)	0.185	0.194	0.203	V	
		Vtdac6_8W	Step 6 (Initial state+6)	0.183	0.192	0.201	V	
		Vtdac7_8W	Step 7 (Initial state+7)	0.179	0.188	0.197	V	
		Vtdac8_8W	Step 8 (Initial state+8)	0.175	0.184	0.193	V	
		Vtdac9_8W	Step 9 (Initial state+9)	0.171	0.180	0.189	V	
		Vtdac10_8W	Step 10 (Initial state+10)	0.167	0.176	0.185	V	
		Vtdac11_8W	Step 11 (Initial state+11)	0.163	0.172	0.181	V	
		Vtdac12_8W	Step 12 (Initial state+12)	0.158	0.166	0.174	V	
		Vtdac13_8W	Step 13 (Initial state+13)	0.152	0.160	0.168	V	
		Vtdac14_8W	Step 14 (Initial state+14)	0.146	0.154	0.162	V	
		Vtdac15_8W	Step 15 (Initial state+15)	0.140	0.148	0.156	V	
		Vtdac16_8W	Step 16 (Initial state+16)	0.132	0.140	0.148	V	
		Vtdac17_8W	Step 17 (Initial state+17)	0.126	0.134	0.142	V	
		Vtdac18_8W	Step 18 (Initial state+18)	0.118	0.126	0.134	V	
		Vtdac19_8W	Step 19 (Initial state+19)	0.112	0.120	0.128	V	
		Vtdac20_8W	Step 20 (Initial state+20)	0.102	0.110	0.118	V	
		Vtdac21_8W	Step 21 (Initial state+21)	0.094	0.102	0.110	V	
		Vtdac22_8W	Step 22 (Initial state+22)	0.086	0.094	0.102	V	
		Vtdac23_8W	Step 23 (Initial state+23)	0.078	0.086	0.094	V	
		Vtdac24_8W	Step 24 (Initial state+24)	0.068	0.076	0.084	V	
		Vtdac25_8W	Step 25 (Initial state+25)	0.060	0.068	0.076	V	
		Vtdac26_8W	Step 26 (Initial state+26)	0.050	0.058	0.066	V	
		Vtdac27_8W	Step 27 (Initial state+27)	0.040	0.048	0.056	V	
		Vtdac28_8W	Step 28 (Initial state+28)	0.032	0.040	0.048	V	
		Vtdac29_8W	Step 29 (Initial state+29)	0.022	0.030	0.038	V	
		Vtdac30_8W	Step 30 (Initial state+30)	0.012	0.020	0.028	V	
		Vtdac31_8W	Step 31 (Initial state+31)	0.002	0.010	0.018	V	
	4W1-2-phase drive (1/16-step at LV8713T)	Vtdac0_4W	Step 0 (When initialized: channel 1 comparator level)	0.191	0.200	0.209	V	
		Vtdac2_4W	Step 2 (Initial state+1)	0.191	0.200	0.209	V	
		Vtdac4_4W	Step 4 (Initial state+2)	0.187	0.196	0.205	V	
		Vtdac6_4W	Step 6 (Initial state+3)	0.183	0.192	0.201	V	
		Vtdac8_4W	Step 8 (Initial state+4)	0.175	0.184	0.193	V	
		Vtdac10_4W	Step 10 (Initial state +5)	0.167	0.176	0.185	V	
		Vtdac12_4W	Step 12 (Initial state+6)	0.158	0.166	0.174	V	
		Vtdac14_4W	Step 14 (Initial state+7)	0.146	0.154	0.162	V	
		Vtdac16_4W	Step 16 (Initial state+8)	0.132	0.140	0.148	V	
		Vtdac18_4W	Step 18 (Initial state +9)	0.118	0.126	0.134	V	
		Vtdac20_4W	Step 20 (Initial state+10)	0.102	0.110	0.118	V	
		Vtdac22_4W	Step 22 (Initial state+11)	0.086	0.094	0.102	V	
		Vtdac24_4W	Step 24 (Initial state+12)	0.068	0.076	0.084	V	
		Vtdac26_4W	Step 26 (Initial state+13)	0.050	0.058	0.066	V	
		Vtdac28_4W	Step 28 (Initial state+14)	0.032	0.040	0.048	V	
		Vtdac30_4W	Step 30 (Initial state+15)	0.012	0.020	0.028	V	

Continued from preceding page

Parameter		Symbol	Conditions	Ratings			Unit	
		min		typ	max			
Current setting comparator threshold voltage (current step switching)	2W1-2-phase drive (1/8-step at LV8712T)		Vtdac0_2W	Step 0 (When initialized: channel 1 comparator level)	0.191	0.2	0.209	V
		Vtdac4_2W	Step 4 (Initial state+1)	0.187	0.196	0.205	V	
		Vtdac8_2W	Step 8 (Initial state+2)	0.175	0.184	0.193	V	
		Vtdac12_2W	Step 12 (Initial state+3)	0.158	0.166	0.174	V	
		Vtdac16_2W	Step 16 (Initial state+4)	0.132	0.140	0.148	V	
		Vtdac20_2W	Step 20 (Initial state+5)	0.102	0.110	0.118	V	
		Vtdac24_2W	Step 24 (Initial state+6)	0.068	0.076	0.084	V	
		Vtdac28_2W	Step 28 (Initial state+7)	0.032	0.040	0.048	V	
	W1-2-phase drive	Vtdac0_W	Step 0 (When initialized: channel 1 comparator level)	0.191	0.200	0.209	V	
	(quarter-step	Vtdac8_W	Step 8 (Initial state+1)	0.175	0.184	0.193	V	
	at LV8712T)	Vtdac16_W	Step 16 (Initial state+2)	0.132	0.140	0.148	V	
		Vtdac24_W	Step 24 (Initial state+3)	0.068	0.076	0.084	V	
	1-2 phase drive (half-step at	Vtdac0_H	Step 0 (When initialized: channel 1 comparator level)	0.191	0.200	0.209	V	
	LV8712T/13T)	Vtdac16_H	Step 16 (Initial state+1)	0.132	0.140	0.148	V	
	2 phase drive (full-step at LV8712T/13T)	Vtdac16_F	Step 16' (When initialized: channel 1 comparator level)	0.191	0.200	0.209	V	

Figure 3 Operating mode current drain (IM) vs VM Voltage

Figure 4 Operating mode current drain (Icc) vs Vcc Voltage

Figure 5 REG5 output voltage vs VM Voltage

Figure 7 Logic pin input current vs VIN Voltage

Figure 9 Output on Resistance vs Output Current(VM=12V)

Figure 11 Output on Resistance ($\mathrm{VM}=12 \mathrm{~V}, \mathrm{Io}=0.8 \mathrm{~A}$) vs Temperature

Figure 10 Output on Resistance vs Output Current(VM=4V)

Figure 13 Diode forward voltage vs Diode Current

Figure 14 Output leakage voltage vs Temperature

Figure 15 Vcc low-voltage cutoff voltage vs Temperature

Figure 19 MONI pin saturation voltage vs Output current

LV8712T/LV8713T
Pin Functions

Pin No.	Pin Name	Pin Function	Equivalent Circuit
$\begin{gathered} \hline 1 \\ 2 \\ 7 \\ 8 \\ 9 \\ 13 \\ 14 \\ 24 \end{gathered}$	RST OE STEP ATT1 ATT2 MD2 MD1 FR	Excitation reset signal input pin. Output enable signal input pin. STEP signal input pin. Motor holding current switching pin. Motor holding current switching pin. Excitation mode switching pin 2. Excitation mode switching pin 1. CW / CCW switching signal input pin.	
4	PS	Power save signal input pin.	
16 17 18 20 21 23	OUT2B RNF2 OUT2A OUT1B RNF1 OUT1A	Channel 2 OUTB output pin. Channel 2 current-sense resistor connection pin. Channel 2 OUTA output pin. Channel 1 OUTB output pin. Channel 1 current-sense resistor connection pin. Channel 1 OUTA output pin	
6	VREF	Constant current control reference voltage input pin.	

Continued on next page.

LV8712T/LV8713T

Continued from preceding page.

Pin No.	Pin Name	Pin Function	Equivalent Circuit
3	REG5	Internal power supply capacitor connection pin.	
5	MONI	Position detection monitor pin.	
10	CHOP	Chopping frequency setting capacitor connection pin.	

Operation description

Stepping motor control

1. Power save function

This IC is switched between standby and operating mode by setting the PS pin. In standby mode, the IC is set to power-save mode and all logic is reset. In addition, the internal regulator circuit does not operate in standby mode.

PS	Mode	Internal regulator
Low or Open	Standby mode	Standby
High	Operating mode	Operating

2. The recommended order of power supply

It is recommendable that the power supplies are turned on in the following order.
VCC power supply \rightarrow VM power supply \rightarrow PS pin $=$ High
For turning off the power supplies, the order should be reversed.
However, the above-mentioned order is presented only as a recommendation, and noncompliance is not going to be the cause of over-current or IC destruction.

3. STEP pin function

Input		Operating mode
PS	STP	
Low	${ }^{*}$	Standby mode
High	Excitation step proceeds	
High	\square	Excitation step is kept

STEP input advances electrical angle at every rising edge (advances step by step).
STEP input MIN pulse width (common in H / L): 500 ns (MAX input frequency: 1 MHz)
However, constant current control is performed by PWM during chopping period, which is set by the capacitor connected between CHOP and GND. You need to perform chopping more than once per step. For this reason, for the actual STEP frequency, you need to take chopping frequency and chopping count into consideration.
For example, if chopping frequency is $50 \mathrm{kHz}(20 \mu \mathrm{~s})$ and chopping is performed twice per step, the maximum STEP frequency is obtained as follows: $f=1 /(20 \mu \mathrm{~s} \times 2)=25 \mathrm{kHz}$.

4. Input timing

TstepH/TstepL: Clock H/L pulse width (min 500ns)
Tds: Data set-up time (min 500ns)
Tdh: Data hold time (min 500ns)
Figure 20. Input timing chart

5. Microstepping mode setting function (initial position)

<LV8712T>

MD1	MD2	Microstepping	Excitation mode	Initial position	
		Resolution		Channel 1	Channel 2
Low	Low	Full Step	2 Phase	100%	-100%
High	Low	Half Step	$1-2$ Phase	100%	0%
Low	High	Quarter Step	W1-2 Phase	100%	0%
High	High	$1 / 8$ Step	2W1-2 Phase	100%	0%

<LV8713T>

MD1	MD2	Microstepping Resolution	Excitation mode	Initial position	
				Channel 1	Channel 2
Low	Low	Full Step	2 Phase	100%	-100%
High	Low	Half Step	$1-2$ Phase	100%	0%
Low	High	$1 / 16$ Step	4W1-2 Phase	100%	0%
High	High	$1 / 32$ Step	8W1-2 Phase	100%	0%

This is the initial position of each excitation mode in the initial state after power-on and when the counter is reset.

6. Initial Position monitoring function

MONI pin monitors the initial position which is open drain.
When the excitation is in the initial position, the MONI output is turned on.
(Refer to " (13) Examples of current waveforms in the respective excitation modes.")
7. Reset function

RST	Operating mode
High	Normal operation
Low	Reset state

Figure 21. Reset function timing chart

When the RST pin is Low, the excitation position of the output is forcibly set to the initial position, and the MONI output is turned on. When RST turns High, the excitation position is advanced by the next STEP input.

8. Output enable function

OE	Operating mode
Low	Output ON
High	Output OFF

Figure 22. Output enable function timing chart
When the OE pin is High, the output turns OFF by force and turns to high impedance. However, since the internal logic circuits are under operation, the excitation position proceeds when the STEP signal is input. Therefore, when OE turns Low again, the output level follows the excitation position led by the STEP input.
9. Forward/reverse switching function

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

Figure 23. Forward/Reverse switching function timing chart
The internal D/A converter proceeds by one bit at the rising edge of the input STEP pulse. In addition, CW and CCW mode are switched by setting the FR pin.
In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.
In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

10. Constant current control setting

The setting of STM driver's constant current control is determined by the following based on the VREF voltage and the resistor connected between RNF and GND.
IOUT = (VREF/5) /RNF resistance

* The above formula gives setting value where the output current is 100% in each excitation mode.

If VREF is open or the setting is out of the recommendation operating range, output current will increase and you cannot set constant current under normal condition. Hence, make sure that VREF is set in accordance with the specification.
However, if current control is not performed (if the IC is used by saturation drive or used without current limit at DCM) make sure that the setting is as follows: $\mathrm{VREF}=5 \mathrm{~V}$ or $\mathrm{VREF}=\mathrm{VREG5}$

Power dissipation of RF resistor is obtained as follows: $\mathrm{Pd}={ }^{\text {lout }}{ }^{2} \times \mathrm{RF}$. Make sure to take allowable power dissipation into consideration when you select RF resistor.

The voltage input to the VREF pin can be switched to four-step settings depending on the statuses of the two inputs, ATT1 and ATT2. This is effective for reducing power consumption when motor holding current is supplied.
Attenuation function for VREF input voltage

ATT1	ATT2	Current setting reference voltage attenuation ratio
Low	Low	100%
High	Low	80%
Low	High	60%
High	High	40%

The formula is given below which is used to calculate the output current when using the function for attenuating the VREF input voltage.

IOUT $=(\mathrm{VREF} / 5) \times($ attenuation ratio $) /$ RNF resistance
Example: At VREF of 1.0 V and a reference voltage setting is $100 \%[(A T T 1, A T T 2)=(L, L)]$ and an RNF resistance of 0.5Ω, the output current is set as follows.

$$
\mathrm{IOUT}=1.0 \mathrm{~V} / 5 \times 100 \% / 0.5 \Omega=400 \mathrm{~mA}
$$

If (ATT1, ATT2) is set to (H, H) in this state, IOUT is obtained as follows:
IOUT $=400 \mathrm{~mA} \times 40 \%=160 \mathrm{~mA}$
In this way, the output current is attenuated when the motor holding current is supplied for power saving.

Figure 24. Constant current control (Attenuation function) waveform
[LV8713T]
$\mathrm{VCc}=5 \mathrm{~V}, \mathrm{VM}=12 \mathrm{~V}$
VREF=1V, RNF=0.51 Ω
PS=High, RST=High, ATT1=Low
MD1 $=$ MD2 $=$ High, $\mathrm{fSTEP}=10 \mathrm{kHz}$

11. Chopping frequency setting

For constant-current control, this IC performs chopping operations at the frequency determined by the capacitor (Cchop) connected between the CHOP pin and GND.
The chopping frequency is set as shown below by the capacitor (Cchop) connected between the CHOP pin and GND.

Tchop \approx Cchop \times Vtchop $\times 2$ / Ichop (s)
Vtchop: Width of threshold voltage (VchopH-VchopL), typ 0.5 V
Ichop: Charge/discharge current, typ $10 \mu \mathrm{~A}$

Fchop ≈ 1 / Tchop (Hz)

For instance, when Cchop is 220 pF , the chopping frequency will be as follows:

$$
\text { Fchop }=1 / \text { Tchop }=10 \mu \mathrm{~A} /(220 \mathrm{pF} \times 0.5 \mathrm{~V} \times 2)=45 \mathrm{kHz}
$$

The higher the chopping frequency is, the greater the output switching loss becomes. As a result, heat generation issue arises. The lower the chopping frequency is, the lesser the heat generation becomes. However, current ripple occurs. Since noise increases when switching of chopping takes place, you need to adjust frequency with the influence to the other devices into consideration. The frequency range should be between 40 kHz and 125 kHz .

12. Output current vector locus (one step is normalized to 90 degrees)

Figure 25.Output current vector

Setting current ration in each Microstepping mode

STEP	LV8713T selectable				LV8712T selectable				LV8712T/LV8713T selectable			
	1/32 Step		1/16 Step		1/8 Step		Quarter Step		Half Step		Full Step	
	Ch- 1 (\%)	Ch- 2 (\%)	Ch- 1 (\%)	Ch- 2 (\%)	Ch- 1 (\%)	Ch- 2 (\%)	Ch- 1 (\%)	Ch- 2 (\%)	Ch-1 (\%)	Ch- 2 (\%)	Ch- 1 (\%)	Ch- 2 (\%)
$\theta 0$	100	0	100	0	100	0	100	0	100	0		
$\theta 1$	100	5										
$\theta 2$	100	10	100	10								
$\theta 3$	99	15										
$\theta 4$	98	20	98	20	98	20						
$\theta 5$	97	24										
$\theta 6$	96	29	96	29								
$\theta 7$	94	34										
$\theta 8$	92	38	92	38	92	38	92	38				
$\theta 9$	90	43										
$\theta 10$	88	47	88	47								
$\theta 11$	86	51										
$\theta 12$	83	55	83	55	83	55						
$\theta 13$	80	60										
$\theta 14$	77	63	77	63								
$\theta 15$	74	67										
$\theta 16$	70	70	70	70	70	70	70	70	70	70	100	100
$\theta 17$	67	74										
$\theta 18$	63	77	63	77								
$\theta 19$	60	80										
$\theta 20$	55	83	55	83	55	83						
$\theta 21$	51	86										
$\theta 22$	47	88	47	88								
$\theta 23$	43	90										
$\theta 24$	38	92	38	92	38	92	38	92				
$\theta 25$	34	94										
$\theta 26$	29	96	29	96								
$\theta 27$	24	97										
$\theta 28$	20	98	20	98	20	98						
$\theta 29$	15	99										
$\theta 30$	10	100	10	100								
$\theta 31$	5	100										
$\theta 32$	0	100	0	100	0	100	0	100	0	100		

13. Typical current waveform in each excitation mode

Figure 26. Full-Step resolution (FR="Low")

Figure 27. Half-Step resolution (FR="Low")

Figure 28. Quarter-Step resolution (FR="Low") (LV8712T)

Figure 29. 1/8-Step resolution (FR="Low")
(LV8712T)

Figure 30. 1/16-Step resolution (FR="Low") (LV8713T)

Figure 31. 1/32-Step resolution (FR="Low") (LV8713T)

14. Constant Current control (Chopping operation)
(Sine wave increasing direction)

(Sine wave decreasing direction)

STEP

Figure 32. Constant current control timing chart
In each current mode, the operation sequence is as described below:

- At rise of chopping frequency, the CHARGE mode begins. (The Blanking section in which the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for $1 \mu \mathrm{~s}$.)
- The coil current (ICOIL) and set current (IREF) are compared in this blanking time.

When (ICOIL < IREF) state exists;
The CHARGE mode up to ICOIL \geq IREF, then followed by changeover to the SLOW DECAY mode, and finally by the FAST DECAY mode for approximately $1 \mu \mathrm{~s}$.
When (ICOIL < IREF) state does not exist;
The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of chopping is over.
Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.
15. Output transistor operation

Figure 33 . Output transistor operation sequence
This IC controls constant current by performing chopping to output transistor.
As shown above, by repeating the process from 1 to 6 , setting current is maintained.
Chopping consists of 3 modes: Charge/ Slow decay/ Fast decay. In this IC, for switching mode (No.2, 4, 6), there are "off period" in upper and lower transistor to prevent crossover current between the transistors. This off period is set to be constant ($\approx 0.375 \mu \mathrm{~s}$) which is controlled by the internal logic. The diagrams show parasitic diode generated due to structure of MOS transistor. When the transistor is off, output current is regenerated through this parasitic diode.

Output FET control function
OUTA \rightarrow OUTB (CHARGE)

Output Tr	CHARGE	SLOW	FAST		
U1	ON	OFF	OFF		
U2	OFF	OFF	ON		
L1	OFF	ON	ON		
L2	ON	ON	OFF		
Output Tr CHARGE SLOW FAST U1 OFF OFF ON U2 ON OFF OFF L1 ON ON OFF L2 OFF ON ON					OUTBAR
:---					

Figure 34.Constant current control waveform [LV8713T]
$\mathrm{Vcc}=5 \mathrm{~V}$, $\mathrm{VM}=12 \mathrm{~V}$
VREF $=1 \mathrm{~V}, \mathrm{RNF}=0.51 \Omega$, Cchop $=220 \mathrm{pF}$ PS=High, RST=High, ATT1=ATT2=Low MD1=High, MD2=Low, fSTEP=100Hz

Figure 35. Constant current control waveform (Stationary state)

Motor current switches to Fast Decay mode when triangle wave (CHOP) switches from Discharge to Charge. Approximately after $1 \mu \mathrm{~s}$, the motor current switches to Charge mode. When the current reaches to the setting current, it is switched to Slow Decay mode which continues over the Discharge period of triangle wave.

Figure 36. Constant current control waveform (Increasing direction)

Figure 37. Constant current control waveform (Decreasing direction)

16. Blanking time

If, when exercising PWM constant-current chopping control over the motor current, the mode is switched from decay to charge, the recovery current of the parasitic diode may flow to the current sensing resistance, causing noise to be carried on the current sensing resistance pin, and this may result in false over current detection. To prevent this false detection, a blanking time is provided to prevent the noise occurring during mode switching from being received. During this time, the mode is not switched from charge to decay even if noise is carried on the current sensing resistance pin.
The blanking time, tBLANK ($\mu \mathrm{s}$), is approximately

$$
\mathrm{tBLANK} \approx 1 \mu \mathrm{~s}
$$

Figure 38. Blanking time waveform [LV8713T]

Vcc=5V, VM=12V
$\mathrm{VREF}=5 \mathrm{~V}, \mathrm{RNF}=1 \mathrm{~V}, \mathrm{CCHOP}=220 \mathrm{pF}$ PS=High,

From the above Fig. , the blanking time appears to be $1.5 \mu \mathrm{~s}$. However, since the mode shifts from charge (blanking time), OFF, to DECAY, the actual blanking time is obtained as follows:
Blanking time $=1 \mu \mathrm{~s}+$ OFF zone $=0.5 \mu \mathrm{~s}$

17. Microstepping mode switching operation

When Microstepping mode is switched while the motor is rotating, each drive mode operates with the following sequence.

FR="Low"

*As for $\theta 0$ to $\theta 32$, please refer to the step position of current ratio setting.

If you switch Microstepping mode while the motor is driving, the mode setting will be reflected from the next STEP and the motor advances to the position shown in the following.
(a) Microstepping (1/32-,1/16-,1/8-,Quarter-.Half-step) \rightarrow Microstepping (1/32-,1/16-, $1 / 8-$-Quarter-.Half-step)

When a microstepping switches to the next microstepping, the excitation position is switched to the next corresponding step angle of the next microstepping mode.
e.g.) When the rotation direction is forward at $1 / 16$-step ($\theta 6$) and if you switch to $1 / 8$ step, the step angle is set to $\theta 8$ at the next step.
When the rotation direction is forward at $1 / 16$-step ($\theta 20$) and if you switch to $1 / 8$ step, the step angle is set to $\theta 24$ at the next step.
(b) Microstepping (1/32-, 1/16-, 1/8-,Quarter-.Half-step) \rightarrow Full-step

When a microstepping switches to the full-step, the excitation position is switched to full-step angle of the present quadrant. Caution is required when switching from $\theta 16$ or higher step angle of microstepping position to full-step.
e.g.) When the rotation direction is forward at $1 / 8$ step ($\theta 8$) and if you switch to full-step, the step angle is set to $\theta 16$ ' at the next step.
When the rotation direction is forward at $1 / 8$ step ($\theta 16$) and if you switch to full-step, the step angle is set to $\theta 16$ ' at the next step. (the electric angle is the same but the absolute value changes)
When the rotation direction is forward at $1 / 8$ step ($\theta 24$) (the electric angle returns and the absolute value changes)
(c) Full-step \rightarrow Microstepping (1/32-,1/16-, 1/8-,Quarter-.Half-step)

When full step switches to microstepping, the excitation position is switched to the next corresponding step angle.
e.g.) When the rotation direction is forward at Full step ($\theta 16^{\prime}$) and if you switch to $1 / 8$ step, the step angle is set to $\theta 20$ at the next step.

```
Microstep mode switching operation
[LV8712T]
Vcc=5V, VM=12V
VREF=1V,RNF=0.51 \Omega
PS=High, RST=High, fSTEP=100Hz
```

Figure 39
Microstepping ($1 / 8$ step) \rightarrow Microstepping (quarter step)

Figure 40.
Microstepping (Half-step) \rightarrow Microstepping ($1 / 8$ step)

Figure 41
Microstepping (quarter step) \rightarrow Full step MD1=Low

Figure 42.
Full step \rightarrow Microstepping (quarter step)

Thermal shutdown function

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds $180^{\circ} \mathrm{C}$. As the temperature falls by hysteresis, the output turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax $=150^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{TSD}=180^{\circ} \mathrm{C} \text { (typ) } \\
& \Delta \mathrm{TSD}=40^{\circ} \mathrm{C} \text { (typ) }
\end{aligned}
$$

Application Circuit Example

The formulae for setting the constants in the examples of the application circuits above are as follows:
Constant current (100\%) setting
When VREF $=1.0 \mathrm{~V}$

$$
\begin{aligned}
\text { IOUT } & =\text { VREF/5/RNF resistance } \\
& =1.0 \mathrm{~V} / 5 / 0.47 \Omega=0.426 \mathrm{~A}
\end{aligned}
$$

Chopping frequency setting
Fchop $=$ Ichop/ $($ Cchop \times Vtchop $\times 2)$

$$
=10 \mu \mathrm{~A} /(180 \mathrm{pF} \times 0.5 \mathrm{~V} \times 2)=55 \mathrm{kHz}
$$

Allowable power dissipation

Evaluation board

Size: $57 \mathrm{~mm} \times 57 \mathrm{~mm} \times 1.7 \mathrm{~mm}$, glass epoxy 2-layer board

Evaluation board Design Diagram

TOP View

Evaluation board

1. Completed PCB with Devices

The evaluation board of LV8712T and LV8713T is common.

PCB size: $57 \mathrm{~mm} \times 57 \mathrm{~mm} \times 1.7 \mathrm{~mm}$, glass epoxy 2-layer board

2.Bill of Materials for LV8712T/13T Evaluation Board

Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
C1	1	REG5 stabilization Capacitor	$\begin{aligned} & 0.1 \mu \mathrm{~F}, \\ & 100 \mathrm{~V} \end{aligned}$	$\pm 10 \%$		Murata	GRM188R72A104KA35*	Yes	Yes
C2	1	```Capacitor to set chopping frequency```	$\begin{gathered} 180 \mathrm{pF}, \\ 50 \mathrm{~V} \end{gathered}$	$\pm 5 \%$		Murata	GRM1882C1H181JA01*	Yes	Yes
C3	1	VCC Bypass Capacitor	$\begin{gathered} 0.1 \mu \mathrm{~F}, \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	$\pm 10 \%$		Murata	GRM188R72A104KA35*	Yes	Yes
C4	1	VM Bypass Capacitor	$10 \mu \mathrm{~F}$, 50 V	$\pm 20 \%$		SUN Electronic Industries	50ME10HC	Yes	Yes
R1	1	Pull-up Resistor for for pin MONI	$\begin{aligned} & 47 \mathrm{k} \Omega, \\ & 1 / 10 \mathrm{~W} \end{aligned}$	$\pm 5 \%$		KOA	RK73B1JT**473J	Yes	Yes
R2	1	Channel 1 output current detective Resistor	$\begin{gathered} 0.47 \Omega, \\ 1 \mathrm{~W} \end{gathered}$	$\pm 5 \%$		ROHM	MCR100JZHJLR47	Yes	Yes
R3	1	Channel 2 output current detective Resistor	$\begin{gathered} 0.47 \Omega, \\ 1 \mathrm{~W} \\ \hline \end{gathered}$	$\pm 5 \%$		ROHM	MCR100JZHJLR47	Yes	Yes
							LV8712T		
IC1	1	Motor Driver			(225mil)	semiconductor	LV8713T	No	Yes
SW1-SW8	8	Switch				MIYAMA ELECTRIC	MS-621C-A01	Yes	Yes
TP1-TP21	21	Test Point				MAC8	ST-1-3	Yes	Yes

3.Evaluation board circuit

4.Evaluation Board Manual

[Supply Voltage]	VM $(4$ to 16 V$):$ Motor Power Supply VCC (2.7 to 5.5 V$):$ Control Power Supply VREF (0 to VCC-1.8V): Const. Current Control for Reference Voltage
[Toggle Switch State]	Upper Side: High (VCC) Middle: Open, enable to external logic input Lower Side: Low (GND)

[Operation Guide]

1. Initial Condition Setting: Set "Open or Low" all switches
2. Motor Connection: Connect the Motors between OUT1A and OUT1B, between OUT2A and OUT2B.
3. Power Supply: Supply DC voltage to VCC, VM and VREF.
4. Ready for Operation from Standby State: Turn "High" the PS pin toggle switch. Channel 1 and 2 are into full-step excitement initial position ($100 \%,-100 \%$) .
5. Motor Operation: Turn "High" the RST pin toggle switch. Input the clock signal into the pin STEP.
6. Other Setting (See Application Note for detail)
i. ATT1, ATT2: Motor current attenuation.
ii. FR: Motor rotation direction (CW / CCW) setting.
iii. MD1, MD2: Microstepping Resolution.
iv. OE: Output Enable.
[Setting for External Component Value]
7. Constant Current (100\%)

$$
\begin{aligned}
\text { At VREF } & =1.0 \mathrm{~V} \\
\text { lout } & =V R E F[\mathrm{~V}] / 5 / \mathrm{RNF}[\mathrm{ohm}] \\
& =1.0[\mathrm{~V}] / 5 / 0.47[\mathrm{ohm}] \\
& =0.426[\mathrm{~A}]
\end{aligned}
$$

2. Chopping Frequency

Fchop $=$ Ichop $[\mathrm{LA}] /($ Cchop \times Vt $\times 2)$

$$
\begin{aligned}
& =10[\mathrm{uA}] /(180[\mathrm{pF}] \times 0.5[\mathrm{~V}] \times 2) \\
& =55[\mathrm{kHz}]
\end{aligned}
$$

5. Evaluation Board waveform (Stepping motor drive)

```
LV8712T
    VM=12V,VCC=5V,VREF=1.0V
    PS=High,RST=High
    ATT1=ATT2=FR=OE=Low
```

Figure 43.
Full-step (MD1=MD2=Low, fSTEP=500Hz)

Figure 44.
Half-step (MD1=High, MD2=Low, fSTEP=1 kHz)

Figure 45.
Quarter-step (MD1=Low,MD2=High, fSTEP=2kHz)


```
LV8713T
    VM=12V, VCC=5V, VREF=1.0V
    PS=High, RST=High
    ATT1=ATT2=FR=OE=Low
```

Figure 47.
Full-step (MD1=MD2=Low, fSTEP=500Hz)

Figure 49.
1/16-step (MD1=Low,MD2=High, fSTEP=8kHz)

Figure 46.
1/8-step (MD1=MD2=High, fSTEP=4kHz)

Figure 48
Half-step (MD1=High, MD2=Low, fSTEP=1 kHz)

Figure 50.
1/32-step (MD1=MD2=High, fSTEP=16kHz)

Cautions for layout：

－Power supply connection pin 【VM】
\checkmark VCC is a control power supply，and VM is a motor power supply．
$\checkmark \quad$ Make sure that supply voltage does not exceed the absolute MAX ratings under no circumstance． Noncompliance can be the cause of IC destruction and degradation．
$\checkmark \quad$ Caution is required for VM supply voltage because this IC performs switching．
\checkmark The bypass capacitor of the VM power supply should be close to the IC as much as possible to stabilize voltage．Also if you intend to use high current or back EMF is high，please augment enough capacitance．

－GND pin【GND，PGND，RNF－resistor GND line】

\checkmark High current flows into the PGND and GND side of RNF resistor；therefore，connect PGND and RNF －GND independently．
\checkmark On the other hand，since PGND and GND are connected through silicon board，if the line of PGND is too long，difference of electric potential occurs between PGND and GND which creates gradient to the GND electric potential within the IC board．This can be the cause of the IC malfunction．Hence make sure to connect PGND and RNF－GND independently so that the pins do not share the common impedance with GND．And GND，PGND，and RNF should be single－point grounded to the low impedance GND area near the IC．Also the capacitor between VM and GND should be connected adjacent to the IC．
－Internal power supply regulator pin 【REG5】
$\checkmark \quad$ REG5 is a power supply to drive output FET（typ 5V）．
\checkmark When VM supply is powered and PS is＂High＂，REG5 operates．
$\checkmark \quad$ Please connect capacitor for stabilize REG5．The recommendation value is 0.1 uF ．
\checkmark Since the voltage of REG5 fluctuates（ $\pm 10 \%$ ），do not use it as reference voltage that requires accuracy．

－Input pin

\checkmark The logic input pin incorporates pull－down resistor（100k Ω ）．
$\checkmark \quad$ When you set input pin to low voltage，please short it to GND because the input pin is vulnerable to noise．
$\checkmark \quad$ The input is TTL level（H： 2 V or higher， $\mathrm{L}: 0.8 \mathrm{~V}$ or lower）．
$\checkmark \quad$ VREF pin is high impedance．

－OUT pin【OUT1A，OUT1B，OUT2A，OUT2B】

\checkmark During chopping operation，the output voltage becomes equivalent to VM voltage，which can be the cause of noise．Caution is required for the pattern layout of output pin．
\checkmark The layout should be low impedance because driving current of motor flows into the output pin．
\checkmark Output voltage may boost due to back EMF．Make sure that the voltage does not exceed the absolute MAX ratings under no circumstance．Noncompliance can be the cause of IC destruction and degradation．

－Current sense resistor connection pin【RNF1，RNF2】

\checkmark To perform constant current control，please connect resistor to RNF pin．
\checkmark To perform saturation drive（without constant current control），please connect RNF pin to GND．
\checkmark If RNF pin is open，you cannot set constant current under normal condition．Therefore，please connect it to resistor or GND．
\checkmark The motor current flows into RNF－GND line．Therefore，please connect it to common GND line and low impedance line．

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2011. Specifications and information herein are subject to change without notice.

